Int, J. Heat Mass Transfer. Vol. 31, No. 3, pp. 591-602, 1988
Printed in Great Britain

0017-9310/88 $3.00+ 0.00
Pergamon Press plc

On the mass transfer in a circular conduit dialyzer
when ultrafiltration is coupled with dialysis

M. ABBAS and V. P. TYAGI

Division of Biomechanics, Department of Biological Engineering, U.T.C., BP 233,
60206 Compiégne Cedex, France

{Received 27 October 1987)

Abstract—Transport of a solute in a laminar flow of a Newtonian fluid through a permeable circular duct,
where there exists a small radial flux of the fluid (ultrafiltration) at the duct wall, is considered theoretically.
Assumptions are made which are satisfied in a test-dialyzer. An exact analytical solution for the con-
centration profile is obtained by using separation of variable method. The necessary requirement that the
solution must tend to the pure dialysis case solution in the limit ultrafiltration tending to zero is fulfilled.
Exact analytical expressions are derived for the eigenconstants of the solution. This solution is applied to
blood flow mass transfer in a hollow fibre artificial kidney performing simultaneous dialysis and ultra-
filtration. Comparisons are made with earlier work.

1. INTRODUCTION

StEADY state heat and mass transfer problems of
incompressible laminar flows in circular and flat ducts
have been studied theoretically by a large number of
investigators, as these problems are both of fun-
damental and technological importance. In the pre-
sent paper, we consider the steady state mass transfer
in a homogeneous fluid which flows through a straight
circular duct. The mass transfer entrance region is
preceded by a part of the duct in which the fluid flow
gets fully developed. In the fluid medium in the duct,
mass transfer occurs due to diffusion (dialysis) and
convection (ultrafiltration) of a solute across the mem-
brane (duct wall) to another fluid called the dialysate,
where the dialysate is a solvent that flows outside the
duct and flows fast and with mixing. In the part of the
duct where mass transfer occurs, the flow is laminar
and is assumed to be Newtonian and of constant
physical properties. It is assumed that axial mass
diffusion is negligible and that dialysate side mass
transfer resistance and bulk concentration, ultra-
filtration velocity at duct wall and mass transfer
entrance section concentration are constant. The mass
flux to the inner surface of the duct wall is equal to
the mass flux through the wall.

This work is motivated by the blood flow mass
transfer problem occurring in a hollow fibre artificial
kidney that performs dialysis and ultrafiltration sim-
ultaneously. With regard to artificial kidney, sim-
ultaneous dialysis and ultrafiltration (SDF) is of cur-
rent interest. This SDF procedure provides adequate
removals of both small molecules (low molecular
weight toxic molecules) and middle molecules (inter-
mediate molecular weight toxic molecules) from
uremic blood, which is not possible by dialysis or
ultrafiltration alone. According to clinician’s review
[1] and clinical experiences of Leber et al. [2} and
Wizemann et al. [3], the SDF procedure is well tol-
erated by the patients and reduces the treatment time.

Successful rigorous theoretical studies [4-6] on the
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above-stated mass transfer problem are available, but
for its particular case of zero ultrafiltration, i.e. for
the case of pure dialysis. Jagannathan and Shettigar
{7] attempted to provide a rigorous theoretical study
on the problem in the case of SDF, but their work is
open to discussion as will be shown later. The present
paper is concerned with a new approach to the prob-
fem of combined dialysis and ultrafiliration stated
above. As compared to the earlier work [7], some of
the features of the present study are as follows.

(1) An appropriate non-dimensionalization scheme
is used.

(2) A correct expression for axial velocity com-
ponent from Yuan and Finkelstein [8] is used.

{3) An analysis is given from which pure dialysis
case results are deducible as a limiting case of zero
ultrafiltration.

(4) Exact analytical expressions for eigenconstants
under variable separable method are obtained.

2. ANALYSIS

Using the cylindrical polar coordinates (7, 8, %)
for the interior of the circular duct, the equations
governing the mass transfer problem in hand may be
written as follows.

The mass balance equation:

p| e+
o

The initial condition :

1 éc _dc _Oc
?Ff]”é%”%' @

c=¢ atx=0. @
The boundary condition:

0 _ .
WD;?—:‘-*- Voe= K (c—cp)+TrV.c

atF=R, #>0. (3)
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NOMENCLATURE
as, series coefficients introduced by R hollow fibre radius
equation (27) Ry dialysate side mass transfer resistance
A, eigenconstants introduced by R, ultrafiltration Reynolds number
equation (32) Sh,, wall Sherwood number
B parameter given by equation (10) T membrane transmittance coefficient
¢ local concentration u dimensionless form of &
¢p bulk dialysate concentration Uy U/ ,(0)
¢ mass transfer entrance section i velocity component in x-direction in
concentration dialyser
M mixing-cup concentration 7 mean of 4
Conid central line concentration 4,00 dyatx=0
Cw wall concentration v dimensionless form of &
D diffusivity coefficient vV ultrafiltration rate
F dimensionless form of ¢ 0 velocity component in r-direction in
K, wall mass transfer coefficient, dialyser
(1/(Rp+1/P,)) |7 ultrafiltration velocity
L dialyzer length X dimensionless form of x
Ny number of hollow fibres Xy valueof xat x = L
)4 function given by equation (33) x axial coordinate
P, membrane permeability X function introduced by equation (21)
Q flow flux in dialyzer Y function introduced by equation (21).
O value of Q at mass transfer entrance
section
r dimensionless form of 7 Greek symbols
F radial coordinate under cylindrical Bom eigenvalues
polar coordinate system, with origin 0p Cp/¢
at the centre of mass transfer entrance v kinematic viscosity
section ¥ ultrafiltration Peclet number.

The natural boundary condition :

dc -
Fr 0 atF=0. Q)

The axial velocity component i and the radial vel-
ocity component #, according to Yuan and Finkelstein

[8], are given by
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It may be noted that the above equations with
ultrafiltration velocity ¥, = 0 refer to pure dialysis
[4-6].

We use the following non-dimensionalization
scheme :

xD 14

*= R0 "R @
F= (L:_’I?) ©
where
B~ 0T (10
Sh, = KBR (1
v-0R (12)

(The parameter Sh,, is the wall Sherwood number and
the parameter y is the ultrafiltration Peclet number.)

In terms of the above-defined dimensionless quan-
tities, the system of basic equations (1)—(6) transforms
to
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F=1 atx=0 (14)
oF
o HSha—(I=TWIF =0 atr=1, x>0
CE)]
‘Z—f=0 atr=0 (16)

1 2
= E—1(1—4E1WX)y, v= ;f,

Uy = Ei(l —4E\yx) (17)

where
d({) f=EP-Er*+Er—Eg®) (18)
R, 1 R, R, R,
E1—1+18 E2_§+—8—’ Es—l_, E4—77‘§
19
V.R
R,=— (20

(The parameter R, is the ultrafiltration Reynolds
number.)

If we set R, =y =0 in the above dimensionless
equations (13)-(19), we obtain those of pure dialysis
case. This is not found with the study of Jagannathan
and Shettigar [7].

Using variable separable method and, hence, taking

F=X(Y(r) @n
equations (13), (15) and (16) are reduced to
EL(1—4E,|[/x)X'+ﬁ2X= 0 22)
o (1,2 s, g
¥ +(;—w;f)Y +B2(§)Y— @3)
Y +[Sh,— (=T 1Y =0 atr=1 (24)
Y=0 atr=0 (25)

where B is an unknown parameter and is required to
be determined.
Equation (22) has as its solution

X = (1-4Eyx)*'¥, (26)

A solution to equation (23), subject to the boundary
conditions (24) and (25), can be obtained by the
Frobenius method, i.e. by taking

Y=Y ar™

»=0

@7

which, when substituted back into equation (23),
admits the following values for the constants a,,:

ao=1

Arirg =

g+ 120 =) Euan

+{2B* — Qi+ 8W}Eaz ., 4+ {(4i+4W — 387}
X Esay.,,+ {4ﬂ z —(4iY}Eay] (28)

where
i=-3,-2,-1,0,1,2,...
a_2=a_4=a_6=0 (29)
and satisfies equation (24) by demanding
Y [2n+Sh, — (1-TrWla,, = 0. (30)
n=0
The roots of equation (30), denoted by B, m=1,

2,..., are the eigenvalues.

In using the initial condition given by equation (14),
the solution for the system of equations (13)-(16) is
given as follows:

@3D

where X, denotes X and Y,, denotes Y when f denotes
B.. and the coefficients 4,,, called eigenconstants, are

given by
J;l exp (p) (‘%) Y,dr
A, =" , o m=1,2..., (32
L exp (p)(‘%) Yidr
with
1 2
o= |G-+ C))e .

The solution for the local concentration, c, is there-
fore given by

¢=c¢B+c(1—-B) i I:A,,,(l —4E x)fel ¥

X {i ag'",,’rz"}:l (34)

where af” denotes a,, when § denotes 8,

The expressions for wall concentration c,, central
line concentration ¢,;q and normall wall concentration
gradient (—dc/0F);-x are given by (using equation
(34)

¢ =cB+c(1—B) ¥ [Am(l—w,wx)ﬂ:w
m=1

X { i a(z’;')}il 39

Caia = GB+(1—B) ¥ [An(1—4E, ¥x)Pw*¥]
m=1
(36)
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dc i o ;
T oF ==lall— - /4%
( 5f)r=R 7 I:c,(l B) mgl l:A,,,(l 4E,¥x)

x { - "i::o Zna({Z)}J]. 37

By definition, the mixing-cup concentration, denoted
by cy;, is to be calculated according to

2 'R
f J curdrde
o Jo
™ = Ty R
J J‘ urdrdé
0o Jo

which under the present non-dimensionalization
scheme transforms to

(38)

1

2
— | curdr.
Un Jo

om = (39
Using the expressions of ¢, # and u,, already given in
this section, it is found that

en = ¢B+2¢(1-B) ), [Am(l —4E Wx)b ¥
m=1

d E 2F 3E 4F
mf =1 _ 2 3 _ 4
X {,anz" <n+1 a2 tava n+4>}:|' (40)

The computation of the eigenconstants A4, involves
a substantial amount of work, as it involves numerical
integration (see equation (32)). In fact, Jagannathan
and Shettigar [7] also obtained the same type of equa-
tion for their eigenconstants and used a numerical
method of integration to compute them. Numerical
integration can be avoided if one gives an exact ana-
Iytical solution for the eigenconstants. With reference
to this a calculation was done in the present work,
where certain operations were performed with equa-
tion (23) and equations (24) and (25) were used, and
the following exact analytical solution for A, was
obtained :

4 = —{Sh,—(1—=Tg)¥}

[ i {2n+Sh, —(1— TR)‘{‘}BZa’z,,:I

m

m=1,2,... (41

where

da,,
dg?y

It may be noted that the computer time taken by
the above analytical solution for 4,, is negligible as
compared to that taken by a solution for A4, which
involves numerical integration.

The results of the case of pure dialysis are not
deducible from the results given in Jagannathan and
Shettigar [7], but are easily deducible by setting
R, = ¢ = 0 in the present results that have appeared
after equation (21), excepting the result for X, equa-

n=12,.... 42)

=
A, =

tion (26), for which mathematical limits are to be
evaluated. It is easily obtained that

Jim X = exp () 43)
where f is to be regarded to be governed by equation
(BO)with R, =y =0.

3. RESULTS AND DISCUSSION

In this section, some results of Jagannathan and
Shettigar [7] are compared with the corresponding
results based on the present analysis. Specifically
speaking, their Figs. 3, 5 and 6 are referred to in the
discussions here. Following Jagannathan and Shet-
tigar [7], the cases of vanishing dialysate bulk con-
centration and resistance (i.e. cp = 0 and K, = mem-
brane permeability), which refer to a sufficiently fast
dialysate flow with well-mixing, are referred to in the
present discussions. The first three figures in the pre-
sent paper are based on the present analysis and cor-
respond, respectively, to Figs. 3, 5 and 6 of Jagan-
nathan and Shettigar.

Figure 1 shows mixing-cup concentration as a func-
tion of x for values of x up to 0.72, whereas, Fig. 3 of
Jagannathan and Shettigar shows the same for the
values of x up to 0.45. In Fig. 3 of Jagannathan and
Shettigar, it is seen that the mixing-cup concentration
curves which meet at x = 0 are diverging, and that
this divergence increases as x increases and is such
that it is indicated that the curves are not likely to
converge in any sub-range of x. In the present Fig.
1, the mixing-cup concentration curves are seen to
converge around x = 0.45. It is also observed that the
quantitative change that takes place in the mixing-cup
concentration in going from zero ultrafiltration to
non-zero ultrafiltration is significantly different in Fig.
3 of ref. [7] as compared to the present Fig. 1. This
quantitative change is seen to be more in their figure.
It is noteworthy that Jagannathan and Shettigar’s
figure shows that the effect of ultrafiltration is to
increase the mixing-cup concentration at all x > 0.
Therefore, it is interesting that the present Fig. 1
shows that the effect of ultrafiltration is to increase
the mixing-cup concentration at all x>0 up to a
certain x and then to decrease it at all the remaining
higher x. A physical explanation for this may be as
follows.

The pure dialysis case mixing-cup concentration
shown in the present Fig. 1 is influenced by two
factors, namely : (1) wall directed radial fluid motion
in the duct ; and (2) axial fluid motion reduction every-
where in the region x > 0 and increasing of the axial
fluid motion reduction with x in the duct, which
appear only as a result of ultrafiltration.

The effect of (1) is to increase the mixing-cup con-
centration, because the fluid that is convected into the
wall is convected from the immediate neighbourhood
of the wall and the solute concentration in the immedi-
ate wall neighbourhood is smaller than that in and
around the centre. On the other hand, the effect of (2)
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FiG. 1. Mixing-cup concentration vs axial distance for constant Sh,, and various v.

is to decrease the mixing-cup concentration, because
the lower the axial motion of fluid the lower is the
local concentration in the flow field in the duct. The
effect of (1) has its maximum intensity near the mass
transfer entrance section, x = 0, as the concentration
differences near the wall are maximum there. On the
other hand, the effect of (2) has its minimum intensity
near x = 0, as axial fluid motion reduction is mini-
mum here. Thus, out of the effects of (1) and (2), the
effect of (1) is dominant near x = 0. However, the
effect of (2) increases as x increases, because the axial
fluid motion reduction increases as x increases. There-
fore, at a distance away from the mass transfer
entrance section in the axial flow direction, the effect
of (2) overtakes and dominates that of (1). Thus the
given ultrafiltration has the effect of increasing the
mixing-cup concentration at all x > 0 up to certain x,
say, at all x satisfying 0 < x < x,, and then that of
decreasing the mixing-cup concentration at all the
remaining x > x..

Figure 2 of the present paper shows local con-
centration as a function of the radial coordinate r at
fixed x, namely x = 0.45, and for a fixed Sherwood
number. In the corresponding Fig. 5 of Jagannathan
and Shettigar, the local concentration curves are
almost parallel to each other, whereas the present
local concentration curves (Fig. 2) are not distinctly
parallel. In the present Fig. 2, the curves are close to
each other at r = 0 and have maximum separation
among themselves at r = 1. It is also observed that
the upward shifting of the local concentration curve,
as a result of going from zero ultrafiltration to a non-
zero ultrafiltration, in this figure is quantitatively
different from that in Fig. 5 of Jagannathan and Shet-
tigar. This upward shifting is significantly smaller in
Fig. 2 than in their Fig. 5. Further, their figure shows
that local concentration at any r increases, and
increases only, with the increase in ultrafiltration vel-
ocity, as no two curves of theirs are intersecting. How-
ever, the picture with Fig. 2 is somewhat different
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FiG. 2. Local concentration vs radial distance for constant Sh,and various .

in that some curves are intersecting and the local
concentration at any r in a neighbourhood of r = 0
decreases with the increase in ultrafiltration velocity
if the ultrafiltration velocity is increased beyond a
certain value. This may be explained as follows. The
wall directed radial fluid motion is smaller in the vicin-
ity of the centre, r = 0, than in the vicinity of the wall,
r = 1, Therefore, the effect of this fluid motion to
increase local concentrationislessatand around r = 0
than at and around r = 1. That is one reason that
the upward shifting of concentration profile with
increments in ultrafiltration velocity in Fig. 2 isless in
the vicinity of r =0 than in the vicinity of r = 1.
Further, as ultrafiltration velocity increases, the effect
of the radial fluid motion around the centre, r = 0,
does not increase as fast as that of axial fluid motion
reduction (where the effect of axial fluid motion
reduction is to reduce local concentration), par-
ticularly at such a distant location as x = 0.45. There-
fore, if the ultrafiltration velocity is increased beyond
a certain value, the local concentration is likely to
decrease at and around r = 0.

The next figure of the present paper, i.e. Fig. 3,
shows local concentration as a function of the radial
coordinate r at the same fixed x, 1.e. x = 0.45, referred
to fixed non-zero and zero values of ultrafiliration
velocity at various membrane permeabilities. The cor-
responding Fig. 6 of Jagannathan and Shettigar shows
that, at all wall Sherwood numbers, the local con-
centration is higher in the case of ¢ # 0 than in the
case of y = 0. However, this is true at small Sherwood
numbers, which may be explained as follows. As local
concentration decreases and nonuniformity in local
concentration distribution increases with the increase
in membrane permeability, i.e. with the increase in

wall Sherwood number, the effect of the axial fluid
motion reduction, which is to be felt by, and is to
reduce, this concentration, increases as wall Sherwood
number increases. As has been mentioned already,
this effect also increases with x. Therefore, at such a
distant location as x = 0.45, the effect of axial fluid
motion reduction is likely to become dominant and,
therefore, local concentration is likely to be lower in
the case of ¥ # 0 than in the case of ¥ = 0 if wall
Sherwood number is increased beyond its certain
value. This may be seen in Fig. 3, wherein the con-
centration profile of the case of ¥ # 0is below that of
the case of Y = 0 when Sh,, > 0.3507.

In the remaining part of this section, we will refer
to a specific case. We take 2R = 0.02 cm and L = 12
cm, as these values of hollow fibre diameter and
length, respectively, are of interest with reference to
modern artificial kidney [1]. With regard to mem-
branes that form walls of hollow fibres, we consider
cuprophan (CUP) and polyacrylonitrile (PAN)
because they are representative of membranes vsed in
the modern hemodialyzer [9]. As far as solutes are
concerned, we take urea and vitamin B-12, as the
former is found in the largest quantity among the
small molecules in blood and the latter has been recog-
nized as a middle molecule marker {10]. In order to
be within clinical limits, as the blood flow rate to,
and ultrafiltration rate in, a dialyzer are around 12
and 3 1h~! respectively, we take #,(0) = 0.53 cm s™'
and three values for the ultrafiltration velocity, viz.
V.=0.0, 0.15 and 0.30 cm h~'. The largest value
corresponds to ¥ =3 1h"! for a 1 m® hemodialyzer.
Using these values and v = 1.388 x 10~ cm? 5™, the
numerical values of wall Sherwood number Sk,
ultrafiltration Peclet number ¢ and ultrafiltration
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FiG. 3. Local concentration vs radial distance for constant y and various Sh,,.

Reynolds number R, are determined, and are shown
in Tables 1 and 2. In Table 1, the references for the
values of membrane permeability P, diffusivity
coefficient D and membrane transmittance coefficient
TR are [10], [11] and [12] respectively.

Figure 4 shows the variation of local concentration
with radial coordinate r at three axial locations and
for two non-zero ultrafiltration velocities. We note
that, in going from pure dialysis to combined dialysis
and ultrafiltration, local concentration decreases in
the vicinity of centre, i.e. near r = 0, and then increases
at all remaining higher values of r. However, this
behaviour is different at different axial positions.

Figure 5 exhibits the variation of dimensionless
normal wall concentration gradient in the main flow
direction. It is seen that normal wall concentration
gradient decreases as x increases. We observe that this
decrease is gradual with the axial coordinate. We also
note that in going from zero ultrafiltration to non-
zero ultrafiltration the wall concentration gradient is
decreased with ultrafiltration velocity.

Figure 6 shows the variation of central line con-
centration with axial coordinate at different ultrafil-
tration velocities. It is seen that the central line con-
centration decreases as x increases. It is also seen
that up to a certain axial distance the central line

Table 1. Numerical values of wall Sherwood number and membrane transmittance

coefficient
Solutes Urea Vitamin B-12
Membranes PAN CUP PAN CUP
D (cm?s™") 1.0x1073 0.23875x 1073
K, (cms™) 13.2x10°* 11.5x10°* 235x 1074 0.59x 104
Sh,, 1.32 1.15 0.98429319 0.24712041
Tr 1.0 1.0 0.94 0.629

Table 2. Numerical values of ultrafiltration Peclet and Reynolds

numbers
V. (cmh™") 0.0 0.15 0.30
R, 0.0 0.30019x10-* 0.60038 x 10~*
Y (urea) 0.0 0.04166 0.08332
Y (vitamin B-12) 0.0 0.17452 0.34904
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concentration increases with ultrafiltration velocity,
and then it decreases with ultrafiltration velocity at
the remaining higher values of x.

Figure 7 exhibits the wall concentration as a func-
tion of x. We observe that wall concentration
decreases as x increases. It is seen that, due to non-
zero V,, the wall concentration increases at all x.
However, curves reveal that at some higher x the non-
zero ultrafiltration may reduce the wall concentration.

Figure 8 shows the dimensionless mixing-cup con-
centration as a function of x at zero and non-zero
ultrafiltration velocities. The value of the mixing-cup
concentration in all cases is nearly unity at the mass
transfer entrance section, i.e. at x = 0.

4. CONCLUDING REMARKS

An exact analytical solution for a steady state sol-
ute concentration distribution in a circular duct where
mass transfer occurs due to simultaneous dialysis and
ultrafiltration has been obtained by using variable
separable method. The solution satisfies the necessary
requirement that it should yield the solution of the
pure dialysis case in the limit ultrafiltration tending to
zero. Exact analytical expressions have been obtained
for the eigenconstants of the solution, which implies
a substantial reduction of numerical work and con-
siderable saving of computer time.

It has been found that the computer time consumed
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Mass transfer in a circular conduit dialyzer
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FiG. 8. Mixing-cup concentration vs axial distance at T = 0.94 in the cases of vitamin B-12 and poly-
acrylonitrile.

SUR LE TRANSFERT DE MASSE DANS UN DIALYSEUR CYLINDRIQUE LORSQUE
L'ULTRAFILTRATION EST COUPLEE AVEC LA DIALYSE

Résumé—On considére théoriquement le transfert d’un soluté dans un fluide newtonien en écoulement
laminaire traversant un conduit cylindrique perméable, avec un faible flux radial de fluide (ultrafiltration)
4 la paroi du conduit. Des hypothéses sont faites qui sont satisfaisantes dans un dialyseur d’essai, Une
solution analytique exacte pour le profil de concentration est obtenue en utilisant la méthode de séparation
des variables. Elle réduit 4 la solution de la dialyse pure lorsque lultrafiltration tend vers zéro. Des
expressions analytiques exactes sont dérivées pour les valeurs propres. Cette solution est appliquée au
transfert massique sanguin dans une fibre creuse simulant un rein pour simuler la dialyse et "ultrafiltration
simultanées. Des comparaisons sont faites avec des travaux ultérieurs.

ZUM STOFFAUSTAUSCH IN EINEM ROHREN-DIALYSATOR BEI GEKOPPELTER
ULTRAFILTRATION UND DIALYSE

Zusammenfassung—Der Transport einer Losung durch ein permeables zylindrisches, von einem new-
tonschen Fluid laminar durchstrémtes Rohr wird theoretisch betrachtet. An der Rohrwand existiert ein
kleiner radialer Fluidstrom (Ultrafiltration). Es werden Annahmen gemacht, welche durch Messungen in
einem Test-Dialysator gerechtfertigt worden sind. Fiir das Konzentrationsprofil wird eine exakte analy-
tische Losung mittels der Trennung der Variablen ermittelt. Die notwendige Forderung, daB die Ldsung
fiir den Grenzfall einer verschwindenden Ultrafiltration die reine Dialyse beschreibt, ist erfiillt. Fir die
Eigenwerte der Ldsung werden exakte analytische Ausdriicke hergeleitet. Diese Losung wird angewendet
auf den Stoffaustausch einer Blutstromung durch eine Hohlfaser in einer kiinstlichen Niere, in der
gleichzeitig Dialyse und Ultrafiltration auftritt. Vergleiche mit fritheren Arbeiten werden angestellt.
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MACCOINEPEHOC B KPYTJIOM INPOTOYHOM AHWAJIM3ATOPE ITPH B3IAMMOCBA3HU
TMMPOLIECCOB VIBTPAGHUIIBTPAIIMU K JUAJIU3A

AmmoTaims—TeopeTHYECKH PACCMATPHBACTCE NEPEHOC DACTBOPEHHOIC BEIISCTBA NPH JIAMHHAPHOM
TeYEHUN HBLIOTOHOBCKOH XHIKOCTH B KDYIJIOM KaHa e ¢ MPOHHUAGMBIMH CTEHKaMH, Yepe3 KOTOphe
NPOKCXONHT HEGONBINOE PANNANBLHOE TeYeHHE XunxocTH (yabrpabunsTpauus). [IpasuashocTs coenan-
HHIX TIPeaNiOJIOKCHHH NPOBEPSCTCA Ha ONBITHOM AMajaH3daTope. MeTOZOM pa3sfeNeHHs HepeMEBHbIX
MOJIYMEHO TOYHOE AHAJIATHYECKOE PELEHHE I NpodHIs KOHUeHTpaumil. Beinosmmero HeoGxomumoe
YCJIOBHE, COTJIACHO KOTOPOMY PellieHHEe KODKHO CTPEMHTBCS K PEILUEHHIO B CyYae YHCTOro JHAJIA3A B
npefesie NpE CTpeMieHMM yiabTpaduabTpaumu K Hymo. Jna coGCTBEHHBIX 3HAYeHHH ITOCTOSHHBIX
peHICHUs NOAYYSHH TOMHbIC AHANHTHYECKHE BhipaxeHHs. PelleHne BCHOJIB3OBAHO NPHMEHHTENBHO K
TEPEHOCY MAacChl NPH TEYEHHH KPOBH B MYCTOTENOM BOJOKHHCTOM MCKYCCTBEHHOH nOUKe, B KOTOpO#
ONHOBPEMECHHO NPOMCXOAAT NPOHECCH ANanu3a M ynbTpaduinbrpaimu. JaHo CpaBHEHHE C pE3ynbTa-
TaM¥ paHee NPOBEHCHHOTO HCCACHOBAHNS.



